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Abstract: We consider a make-to-order production-
distribution system with one supplier and multiple customers. 
A set of jobs with due dates need to be processed by the 
supplier and delivered to the customers upon completion. The 
supplier can process one job at a time without preemption. 
Each customer is at a distinct location and only jobs from the 
same customer can be batched together for delivery. We 
consider the single machine scheduling problems in which 
the jobs belong to different families. A setup time is incurred 
for a job if it is the first job to be processed on a machine or 
its processing on a machine follows a job that belongs to 
another family. We consider two due date related objectives: 
the first is to minimize the weighted sum of the maximum 
lateness of jobs to customers and the delivery cost. The 
second objective is to minimize the weighted sum of the 
number of late jobs and the delivery cost. We give two 
optimal algorithms to solve the problems. 
 
Keywords: supply chain; scheduling ; batch delivery ; 
make-to-order 
 
I. Introduction 
 
The Production and distribution operations are two key 
operational functions in a supply chain. To achieve optimal 
operational performance in a supply chain, it is critical to 
integrate these two functions and plan and schedule them 
jointly in a coordinated manner. There are various integrated 
models of production scheduling and product distribution in 
the literature. The objective of such models is typically to 
optimize both customer service level and distribution cost. To 
learn more about research results on this aspect, the reader is 
referred to see Hall and Potts [1], Chen and Variraktarakis 
[2],Chen and Pundoor [3],Chen and Lee [4], among others. 
Another line of research related to the problem under study 
focuses on scheduling problem with job family setup. There 
are extensive research results on this problem in the literature. 
For example, Monma and Potts [5] examined the 
computational complexity of some basic models for the 
single- and parallel-machine cases with some common 
scheduling objectives. Liaee and Emmons [6] reviewed 
scheduling theory concerning the processing of several 
families of jobs on single or parallel facilities. For various 
performance measures, they classified the different problems 
as NP-hard, efficiently solvable or open. For more details on 
this line of research, the reader is referred to the reviews by 
Potts and Kovalyov  [7], and Allahverdi et al. [8]. However, 

these studies have not considered the product transportation 
issue.  
There are only limited results on scheduling with job families 
and delivery coordination. Dawande et al.[9] studied conflict 
and cooperation issues between a manufacturer and a 
distributor with a focus on setup cost in production and 
inventory-holding cost in distribution.  Cheng and Wang [10] 
study machine scheduling problems in which the jobs belong 
to different job families and they need to be delivered to 
customers after processing. The objective is to minimize the 
weighted sum of the last arrival time of jobs to customers and 
the delivery cost. For the problem of processing jobs on a 
single machine and delivering them to multiple customers, 
they develop a dynamic programming algorithm to solve the 
problem optimally. For the problem of processing jobs on 
parallel machines and delivering them to a single customer, 
they propose a heuristic and analyze its performance bound. 
For the same objective, Wang and Cheng [11] study the 
identical parallel machine scheduling with  job family setup 
and delivery to multiple customers. They develop heuristics 
for the problem and analyze their performance bounds.  
In this paper we consider the single machine scheduling 
problems in which the jobs belong to different families and 
they need to be delivered to multiple customers after 
processing. A setup time is required for a job if it is the first 
job to be processed on a machine or its processing on a 
machine follows a job that belongs to another family. The 
difference between models of Cheng [10] and us is that we 
assume that jobs of the same family belongs to a specified 
customers. This means that each customer orders products 
from the same family and different customers order different 
families of jobs. Processed jobs are delivered in batches to 
their respective customers. Each shipment incurs a delivery 
cost and takes a fixed amount of time. We consider two due 
date related objectives: the first is to minimize the weighted 
sum of the maximum lateness of jobs to customers and the 
delivery cost. The second objective is to minimize the 
weighted sum of the number of late jobs and the delivery cost.  
The remainder of this paper is organized as follows. In 
Section 2 we formulate the integrated scheduling model and 
present some optimal properties. In Section 3 we develop 
optimal algorithms for two problems. In the last section we 
give some concluding remarks. 
 
II. Problems and Basic Properties 
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In this section, we define our problems mathematically and 
introduce some optimality properties satisfied by all the 
problems that we will use in later sections. 
A supplier obtains f orders from f customers that are located 
at different sites at time 0. According to their different 
processing characteristics, each order i  can be seen as a job 
family, so there are f  job families at all. Let 

1 2{ , , , }
ii i i inN J J J=  be the job set of customer i , for 

1, 2, , ,i f=  where 1 2 fn n n n+ + + = . There is a 
single machine available for processing all the jobs. The 
processing time of job ijJ is ijp  ,due date is ijd  and 

preemption is not permitted. In production, if job ijJ  is the 
first job to be processed on a machine or its processing on a 
machine follows a job from another family, then a setup time 

is  is required before ijJ can be processed. 
Once completed on the machine , each job needs to be 
delivered to its customer. We assume that there are an 
unlimited number of transport vehicles available (e.g., they 
are provided by a third-party logistics service firm) to deliver 
the processed jobs from the factory to customers at any time. 
Each vehicle can load at most B n≥  jobs on each trip from 
the factory to a customer. Let it and ic  denote the time and 
cost that a vehicle travels from the factory to customer i , for 

1, 2, ,i f=  .Note that the batch transportation time and 
cost are independent of the batch size. For a given schedule 
of the problem, we define: 

ijC = the completion time of  job ij iJ N∈ , 1, 2, ,i f=  ; 

1, 2, , ij n=  . 

ijD = the delivery time of job ij iJ N∈ , which is the time 

when job ijJ  is delivered to the customer i . 

ij ij ijL D d= − .  The lateness of job ij iJ N∈ . 

1ijU =  if 0ijL >  ；else 0ijU =  . 
TC = the total distribution cost. 
 
We consider the following two due date related objectives for 
measuring the delivery lead-time performance of the supply 
chain: 
(i)  maximum lateness of the jobs: 

max max{ 1, 2, , ; 1, 2, , }ij iL L i f j n= = =         (1) 

(ii)  total number of late jobs: 
1 1

inf

ij
i j

U
= =
∑∑  

We adopt the three-field notation α β γ  widely used in 
scheduling research (see, e.g., [12]) to denote the problems 
under study. We study the following two problems: 

P1: max1 , (1 )is f L TCω ω+ −  

P2: 
1 1

1 , (1 )
inf

i ij
i j

s f U TCω ω
= =

+ −∑∑  

In the α  field, 1 means that the jobs are processed on a 
single machine .In the β  field, is  means that the jobs may 
need a setup before processing since they belong to different 
job families , f means that processed jobs need to be 
delivered to one of the f customers.. The γ  field is the 
objective function to be minimized. [0,1]ω∈  is a given 
constant, representing the weighting factor for the customer 
service level, (1 )ω−  is the weighting factor for the delivery 
cost. 
Hall and Potts [1] study one supplier produce and delivery 
products for multiple manufacturers, this is similar with our 
problem. But they didn’t consider job families and 
transportation time. For maximum lateness problem we 
assume that late jobs are produced and delivered. The 
objective function is used to ensure that the due dates are 
achieved as closely as possible. Second, in models which 
minimize the number of late jobs, we assume that a job which 
would be late is neither produced nor delivered. This 
assumption is relevant where late deliveries are not accepted. 
We state the following observations for problems P1 and 
P2.The proofs are trivial and omitted.  
 
Observation1. For the two problems, there exists no idle 
time at the beginning or between any two adjacent processed 
jobs on each machine in an optimal solution.  
Observation2. For the two problems, there is an optimal 
solution in which the departure time of each shipment is 
equal to the completion time of the last processed job in the 
shipment.  
Observation3. For the two problems, the job finished 
processing earlier should be delivered no later than the 
subsequent processed jobs for the same customer. 

 
In the following sections, in order to develop efficient 
algorithms for the problems, we only consider solutions for 
problems that follow Observations 1–3. 

 

Ⅲ. Optimal Algorithms  
 
Optimal algorithm for P1 
We have the following optimal property for problem P1. 
 
Lemma 1. For problem P1, there exists an optimal schedule 
such that the jobs within each family are processed and 
delivered in nondecreasing order of their due dates (EDD), 
and jobs assigned to one delivery batch are processed 
consecutively on the machine. 
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Denote the due date time sequence for family i  by 

1 2 ii i ind d d≤ ≤ ≤ , 1, 2, ,i f=  . Based on the optimal 
properties stated in lemma 1 ,we develop the following 
dynamic programming algorithm for P1. 
 
Algorithm 1: 
Define the function 1 1 1( , , ; , , ; , , ; , )f f fV l l x x y y b j    
as the minimum value of the maximum lateness for 
scheduling that satisfy the following conditions:  
(1) the total number of scheduled jobs is 1 fl l+ + ,of 

which ul  jobs are from the top of the EDD sequence for 
customer u  , 1, 2, ,u f=  ;  
(2) the number of setups of is  for job family i  is 

( )i i ix x l≤ , 1, 2, ,i f=  ;  
(3) the number of deliveries of family i  is 

( )i i iy y l≤ , 1, 2, ,i f=   ; 
(4) the number of jobs in the last delivery batch is b ,and the 
jobs belong to family (1 )j j f≤ ≤ . 
Boundary condition: 
               (0, ,0;0, ,0;0, ,0;0,0)V = −∞             (2) 
Recurrence relation: 

1 1 1( , , ; , , ; , , ; , )f f fV l l x x y y b j =  

1 1 1

( 1)
1 1

'
1 11

'
1

1

max{ ( , , 1, , ; , , ; , , ; 1, );

       [ ( ) ]}       if 1 

min{max{ ( , , 1, , ; , , , , ;         (3)min

, , 1, , ; , );

    [ (

u

j

j f f f

lf

u u uk j j l b
u k

j f j fi f

j f

f

u u u
u

V l l l x x y y b j

x s p t d b

V l l l x x x

y y y b i

x s p

− +
= =

≤ ≤

=

− −

+ + − >

−

−

+

∑ ∑

∑

   

   

 

1
) ]}}              if  1

u

j

l

k j jl
k

t d b
=










 + − =


∑
' 1j jx x= −  if i j≠ ; '

j jx x=  if  i j=  . 
Optimal solution value: 

1
1 1 1, ,

1

min { ( , , ; , , ; , , ; , )

(1 ) }

f
f f fy y

f

i i
i

V n n x x y y b j

y c

ω

ω
=

+ − ∑



  

 

For all 1 i iy n≤ ≤  ( 1, 2, ,i f=  ). 
Theorem1. Algorithm 1 finds an optimal solution for 
problem P1 in 3 1 2( )fO n f+  time.  
Proof.  Algorithm 1 proceeds according to the forward state 
transition mode. The dynamic program exploits properties of 
an optimal schedule from lemma 1 ,so the algorithm 
eventually finds an optimal solution. The ranges of the values 

il , ix , iy , b and j  are 0 i il n≤ ≤ , 0 i ix l≤ ≤ , 0 i iy l≤ ≤ , 

1, 2, ,i f=  ;1 b n≤ ≤ , and1 j f≤ ≤ , respectively, so the 

number of possible values for the state variables is 3 1( )fO n f+ . 
In the recursive relation, we need at most ( )O f time to 
complete the state transitions in the second term. Therefore 
the algorithm requires an overall computational time of 

3 1 2( )fO n f+ . 
 

Optimal algorithms for P2 
We have the following optimal property for problem P2. 
 
Lemma 2. For problem P2, there exists an optimal schedule 
such that the on-time jobs within each family are processed 
and delivered in nondecreasing order of their due dates 
(EDD), and jobs assigned to one delivery batch are processed 
consecutively on the machine. 
 
Denote the due date time sequence for family i  by 

1 2 ii i ind d d≤ ≤ ≤ ， 1, 2, ,i f=  . Note that late jobs 
will not be produce or delivery. Based on the optimal 
properties stated in lemma 2 ,we develop the following 
dynamic programming algorithm for P2. 
 
Algorithm 2 
Define 1 1 1( , , ; , , ; , , ; , , )f f fV l l x x y y u j g   as the                                                                      
minimum makespan  for processing the on-time jobs that 
satisfy the following conditions: 
(1) the total number of scheduled jobs is 1 fl l+ + ,of 

which ul  jobs are from the top of the EDD sequence for 
customer u  , 1, 2, ,u f=  ;  
(2) the number of setups of is  for job family i  is 

( )i i ix x l≤ , 1, 2, ,i f=  ;  
(3) the number of deliveries of family i  is 

( )i i iy y l≤ , 1, 2, ,i f=   ; 
(4) the first job in the last delivery batch is g ,and the jobs 
belong to family (1 )j j f≤ ≤ ; 
(5) the total number of late jobs is u , 0 u n≤ ≤ . 
Boundary condition: 

(0, ,0;0, ,0;0, ,0;0,0,0) 0V =                (4) 
If  1 1 1( , , ; , , ; , , ; , , )f f f j jgV l l x x y y u j g t d+ >   ，

and  0g > ,then define                                                                          

1 1 1( , , ; , , ; , , ; , , )f f fV l l x x y y u j g = +∞             (5) 
Recurrence relation:   
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1 1 1( , , ; , , ; , , ; , , )f f fV l l x x y y u j g =  

1 1 1

1 1 1

1 1 1

'
1 1( , )

( , , 1, , ; , , ; , , ; 1, , );
( , , 1, , ; , , ; , , ; , , ),

if  0 , ( , , 1, , ; , , ; , , ; , , )
min ;

min{ ( , , 1, , ; , , , , ;

j

j

j

j f f f

jl j f f f

j j f f f

jl j jg

jl j f j fi h J

V l l l x x y y u j g
p V l l l x x y y u j g

g l V l l l x x y y u j g

p t d

p V l l l x x x
∈

− −

+ −

< < −

+ + ≤

+ −

   

   

   

   

1, , 1, , ; , , )}             if              (6)j f jy y y u i h g l− =











  

' '

'
1 1 1

{( , ) 1 ;1 1 if ;1 if ;  if ;

if ; ( , , 1, , ; , , , , ; , , 1, , ; , , ) }
j j

j i j j j j

j f j f j f jl j jl

J i h i f h l i j h l i j x x i j x x

i j V l l l x x x y y y u i h p t d

= ≤ ≤ ≤ ≤ − = ≤ ≤ ≠ = = =

≠ − − + + ≤     

 -1  

Optimal solution value:  

1

1 1 1

min{ (1 ) 0 ,0 ,0 ,1 ;

{ ( , , ; , , ; , , ; , , )}

f

i i j j j j
i

f f f

u y c u n x n y n j f

V n n x x y y u j g

ω ω
=

+ − ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

< ∞

∑
  

 

Theorem2. Algorithm 2 finds an optimal solution for 
problem P2 in 3 2( )fO n f+  time.  
Proof.  Algorithm 2 proceeds according to the forward state 
transition mode. The dynamic program exploits properties of 
an optimal schedule from lemma 2 ,so the algorithm finally 
finds an optimal solution. The ranges of all the values 

il , ix , iy , u , g and j are 0 i il n≤ ≤   ,                        

0 i ix l≤ ≤ , 0 i iy l≤ ≤ , 0 ig l≤ ≤ , 1, 2, ,i f=  ; 
0 u n≤ ≤ ,and 1 j f≤ ≤ , respectively, so the number of 

possible values for the state variables is 3 2( )fO n f+ . In the 
recursive relation, we need at most ( )O nf time to complete 
the state transitions in the third term, and this state variables 
is 3 1( )fO n + . Therefore the algorithm requires an overall 

computational time of 3 2( )fO n f+ . 

 

Ⅳ. Conclusions 
 
In this paper we consider scheduling with family setups and 
delivery to multiple customers. We consider two due date 
related objectives: the first is to minimize the weighted sum 
of the maximum lateness of jobs to customers and the 
delivery cost. The second objective is to minimize the 
weighted sum of the number of late jobs and the delivery 
cost . We give two optimal algorithm to solve the two 
problems. Some research topics remain open for future 
investigation. First, the problems with other customer-related 
objectives such as total tardiness of the jobs may be studied. 
The second research topic is to consider the case of 
processing jobs on parallel machines and delivering them to 
multiple customers. 
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